Optimized approaches for optical sectioning and resolution enhancement in 2D structured illumination microscopy
نویسندگان
چکیده
The use of structured illumination in fluorescence microscopy allows the suppression of out of focus light and an increase in effective spatial resolution. In this paper we consider different approaches for reconstructing 2D structured illumination images in order to combine these two attributes, to allow fast, optically sectioned, superresolution imaging. We present a linear reconstruction method that maximizes the axial frequency extent of the combined 2D structured illumination passband along with an empirically optimized approximation to this scheme. These reconstruction methods are compared to other schemes using structured illumination images of fluorescent samples. For sinusoidal excitation at half the incoherent cutoff frequency we find that removing information in the zero order passband except for a small region close to the excitation frequency, where it replaces the complementary information from the displaced first order passband, enables optimal reconstruction of optically sectioned images with enhanced spatial resolution.
منابع مشابه
DMD-based LED-illumination Super-resolution and optical sectioning microscopy
Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD)...
متن کاملLive Cell Imaging With Spatial Light Modulator-based Optical Sectioning Structured Illumination Microscopy
Structured illumination microscopy (SIM) is a method in fluorescence microscopy which works by acquiring a set of images using widefield detection. Each image in the set is made with a different position of an illumination mask, but with no mask in the detection path [1]. Subsequent image processing is used to produce an optically sectioned image (OS-SIM) [2 4], or an image with resolution beyo...
متن کاملTwo-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue.
Multifocal structured illumination microscopy (MSIM) provides a twofold resolution enhancement beyond the diffraction limit at sample depths up to 50 µm, but scattered and out-of-focus light in thick samples degrades MSIM performance. Here we implement MSIM with a microlens array to enable efficient two-photon excitation. Two-photon MSIM gives resolution-doubled images with better sectioning an...
متن کاملMethods for imaging thick specimens: confocal microscopy, deconvolution, and structured illumination.
When a thick specimen is viewed through a conventional microscope, one sees the sum of a sharp image of an in-focus region plus blurred images of all of the out-of-focus regions. High background, scattering, and aberrations are all problems when viewing thick specimens. Several methods are available to deal with these problems in living samples. These methods can be grouped into three classes: ...
متن کاملFlexible structured illumination microscope with a programmable illumination array.
Structured illumination microscopy (SIM) has grown into a family of methods which achieve optical sectioning, resolution beyond the Abbe limit, or a combination of both effects in optical microscopy. SIM techniques rely on illumination of a sample with patterns of light which must be shifted between each acquired image. The patterns are typically created with physical gratings or masks, and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014